A Route Optimization Method for Cold Chain Logistics Vehicles Considering Road Conditions, Satisfaction of Deliverymen and Customers
-
摘要: 在城市交通拥堵日益严重的背景下,为解决冷链货物配送时效性较差、顾客满意度低以及配送员积极性不高等问题,研究了以总成本与满意度为目标的冷链物流车辆路径优化方法。采集并拟合了工作日、节假日、双休日交通拥堵指数趋势图,得到道路交通拥堵时间分布规律,提出了不同时期、时段内道路路段节点之间的实际通行时间计算方法;设计了配送员薪资与工作强度相结合的评价指标,构建了基于灰色白化权函数的配送员满意度评价模型。考虑随机需求、满意度和时间窗等约束,构建了多目标车辆路径优化模型;针对多目标模型求解的复杂性,设计了改进的自适应大规模邻域搜索算法,算法搜索过程中充分利用其算子的自适应性,有效平衡了NSGA-II算法大规模寻优与耗时之间的关系。以经典的Sioux-Falls交通网络为例进行算例分析,结果表明:①考虑配送员满意度模型后,在工作日、节假日、双休日总成本分别增加了2.05%、1.93%和1.16%,但配送员满意度分别提高了39.43%、46.26%和57.37%,顾客满意度平均提高了1.16%、4.76%和9.75%,运输时间缩短了2.42%、7.34%与8.41%。②以配送总成本最小为主要目标时,当需求变动(即随机需求的标准差σ=1,2,3,4,5)时,得到的缺货成本比未考虑随机需求模型的结果分别增加了0.79%、0.89%、0.93%、0.94%和0.95%,印证了顾客随机需求对企业配送成本产生的影响。所提模型和算法为冷链物流管理中提升配送员和顾客满意度提供了一定的理论基础。Abstract: Considering increasing traffic congestion in urban areas, routing problem of vehicles serving the cold chain logistics is modeled as an optimization problem with multiple objectives (namely delivery cost and satisfaction of customers and deliverymen), which is expected to provide solutions to the punctuality and satisfaction issues within the cold chain logistics industry. Traffic data on weekdays, holidays, and weekends are collected, the temporal distribution of the congestion is studied, and a model for estimating travel time among different nodes within road network is also developed. A gray-whitening weight function is used to evaluate the satisfaction of deliverymen by considering workload and salary. A multi-objective vehicle routing problem is modeled with the following constraints, including stochastic demand, customer satisfaction, time windows, and others. An improved adaptive large neighborhood search (IALNS) algorithm is proposed, which balances the searching scale and computational time of the non-dominated sorted genetic algorithm-II (NSGA-II). The results of the proposed method in the classical Sioux-Falls transportation network are shown as follows: ①When the deliveryman's satisfaction is considered, the total cost of delivery on working days, holidays, and weekends increases by 2.05%, 1.93%, and 1.16%; the deliveryman's satisfaction increases by 39.43%, 46.26%, and 57.37%; the average customer satisfaction increases by 1.16%, 4.76%, and 9.75%; and the transportation time decreases by 2.42%, 7.34%, and 8.41%, respectively. ② When the total cost is set as the main objective andthe standard deviations of customer demand are set as 1, 2, 3, 4, and 5, the shortage cost increases by 0.79%, 0.89%, 0.93%, 0.94%, and 0.95%, respectively, compared with the case without considering the stochastic demand. Study results show that the stochastic demand from the customers has an impact on distribution costs. In conclusion, the proposed model and algorithm can provide a new methods for improving satisfaction of deliverymen and customers of cold chain logistics industry.
-
表 1 参数说明
Table 1. Parameter description
参数 含义 参数 含义 N N={0,1,…,n} 为节点集合,0代表配送中心 K K ={1,2,…,m} m是配送中心能够调用的冷藏车数量[ETi,LTi] 为顾客可接受的时间窗范围;[eTi,lTi] 为顾客渴望的时间窗范围 W W={1,…,e} e是配送人员的数量,每台冷藏车配备一名配送人员,即e = m f/元 冷藏车固定成本 c/元 冷藏车单位时间的运输成本 p/元 冷链品平均单价 τ/元 单位冷链品造成的缺货成本 a/(元/h) 车辆提前到达节点所造成的等待成本 b/(元/h) 车辆迟于服务节点所造成的迟到成本 ε/(元/L) 每单位油价 Tf/元 碳交易价格 k1/(元/h) 配送员在正常工作时间内获得的工资 λ1 运输过程中的生鲜品常数 k2/(元/h) 配送员在加班时间内获得的工资 λ2 卸货过程中的生鲜品常数 r 生鲜品送至顾客点时的新鲜度 ρ 冷链品对时间的敏感系数 tijk/h 冷藏车在配送过程中从节点i到j的行驶时间 tij’k/h 冷藏车在交通畅通时间段从节点i到j的行驶时间 tik/h 冷藏车k到达顾客点i的时刻 wi/h 为顾客点i的卸货时间 Qi/件 顾客点的需求量,服从已知分布的随机变量 Qz/件 为车辆的最大载重 h/(L/h) 运输过程中制冷设备单位时间的油耗 dk/kg k车所服务需求节点的实际总需求量 h’/(L/h) 制冷设备单位时间内卸载时的油耗 Sk/件 k车的实际载货量 η/(kg/L) 碳排放的系数值 Tq/kg 碳排放配额 xijk 0-1变量,当第k辆车从顾客点i行驶到顾客点j时,取1;否则,取0 ψχ 变量,若配送过程在第χ个时间段(χ =1, 2, 3;1为工作日、2为节假日、3为周末)取1;否则,取0 Uik 消除子回路的辅助变量 yjk 0-1变量,若k车路径上有节点j,取1,否则取0 表 2 需求节点基本信息
Table 2. Basic information of demand nodes
需求节点 可接受时间窗 渴望时间窗 服务时长/h 需求量期望值µ/件 6 1 [06:00 08:00] [06:30 07:30] 10 11 3 [08:00 10:00] [08:30 09:30] 12 18 5 [09:00 11:00] [09:30 10:30] 15 15 7 [05:30 07:30] [06:00 07:00] 18 12 8 [09:30 11:30] [10:0011:00] 13 24 9 [06:40 08:40] [07:10 08:00] 17 10 11 [05:20 07:20] [05:50 06:50] 20 6 13 [05:30 07:30] [06:00 07:00] 11 18 15 [08:30 10:30] [09:00 10:00] 16 12 19 [06:00 08:00] [06:30 07:30] 12 9 20 [08:40 10:40] [09:10 10:10] 19 22 23 [05:50 07:50] [06:20 07:20] 25 13 表 3 模型中的参数设置
Table 3. Parameter settings in the model
参数 参数意义 参数值 f 冷藏车固定成本/元 180 p 冷藏品的单价(/元/件) 50 λ 运输过程冷链品新鲜度的变质率/% 100 µ 卸载过程冷链品新鲜度的变质率/% 99 a 提前到达的等待成本(/元/h) 60 b 迟到产生的惩罚成本(/元/h) 60 Tq 碳排放额/kg 20 Tf 碳交易价格(/元/kg) 0.75 h 制冷设备在运输中的燃料油耗(/L/h) 2 k1 配送员在正常工作时间的工资(/元/h) 60 k2 配送员在加班时间获得的工资(/元/h) 80 c 冷藏车单位时间的运输成本(/元/h) 40 ε 燃料单价(/元/L) 6.5 ρ 冷链品对时间的敏感系数/% 50 τ 单位冷链品的缺货成本(/元/件) 15 Qz 冷藏车的容量/件 60 η 碳排放的系数值(/kg/L) 2.67 θ 客户最低满意度要求 0.8 h’ 卸货过程中制冷设备的燃油消耗(/L/h) 2.5 r0 顾客收到货物时的最低新鲜度 0.8 表 4 正态分布下各需求节点顾客需求变化量
Table 4. Variation of customer demand of each node under normal distribution
需求节点 σ = 1 σ = 2 σ = 3 σ = 4 σ = 5 σ = 6 6 1 12.65 14.3 15.95 17.6 19.25 20.9 3 19.65 21.3 22.95 24.6 26.25 27.9 5 16.65 18.3 19.95 21.6 23.25 24.9 7 13.65 15.3 16.95 18.6 20.25 21.9 8 25.65 27.3 28.95 30.6 32.25 33.9 9 11.65 13.3 14.95 16.6 18.25 19.9 11 7.65 9.3 10.95 12.6 14.25 15.9 13 19.65 21.3 22.95 24.6 26.25 27.9 15 13.65 15.3 16.95 18.6 20.25 21.9 19 10.65 12.3 13.95 15.6 17.25 18.9 20 23.65 25.3 26.95 28.6 30.25 31.9 23 14.65 16.3 17.95 19.6 21.25 22.9 表 5 各算法运行下的成本结果对比
Table 5. Comparison of cost results under each algorithm operation
算法 总成本/元 固定成本/元 配送员薪资/ 元 平均满载率/% NSGA-II 2312.3 720 868.1 70.8 IALNS 2162.3 540 784.8 94.5 表 6 考虑与不考虑配送员满意度因素的配送方案对比
Table 6. Comparison of delivery schemes considering and not considering the factor of deliveryman satisfaction
节假日分类 考虑配送员满意度配送路径 未考虑配送员满意度配送路径 工 6-11-23-5-8-6 6-1-13-3-15-6 作 6-1-13-3-15-6 6-7-11-9-8-6 日 6-19-7-9-20-6 6-19-23-20-5-6 节 6-7-19-9-15-5-6 6-7-19-15-8-6 假 6-1-3-8-6 6-11-13-23-20-6 日 6-11-13-23-20-6 6-1-9-3-5-6 双 6-13-23-9-5-6 6-11-13-23-20-6 休 6-7-11-3-8-6 6-1-9-3-5-6 日 6-1-19-15-20-6 6-7-19-15-8-6 表 7 考虑与不考虑配送员满意度因素的车辆调度结果
Table 7. Comparison of vehicle scheduling results with and without considering the factor of deliveryman satisfaction
配送员满意度 节假日分类 总成本/元 运输时间/h 碳排放成本/元 平均顾客满意度 配送员满意度 考虑配送员满意度 工作日 2 162.3 448.2 105.4 0.87 0.99 节假日 1 998.8 337.9 79.6 0.88 0.98 双休日 1 905.5 304.5 71.2 0.90 0.96 未考虑配送员满意度 工作日 2 119.8 437.6 102.8 0.86 0.71 节假日 1 960.4 314.8 75.9 0.84 0.67 双休日 1 883.8 280.9 66.9 0.82 0.61 表 8 随机需求情形下的不同节日各成本对比表
Table 8. Cost comparison table of different festivals in the case of random demand
成本分类 节假日分类 成本/元 确定 σ=1 σ=2 σ=3 σ=4 σ=5 固定成本 工作日 540 540 540 540 540 540 节假日 540 540 540 540 540 540 双休日 540 540 540 540 540 540 运输成本 工作日 267.4 292.8 293.3 296.2 298.5 299.4 节假日 209.1 237.6 232.4 229.5 228.3 237.9 双休日 171.7 203.9 217.6 219.1 204.4 196.3 货损成本 工作日 240.7 241.8 242.5 245.2 248.5 246.1 节假日 239.9 240.6 238.5 242.5 241.8 242.7 双休日 237.2 237.3 244.7 242.1 239.2 241.1 制冷成本 工作日 137.9 146.1 148.1 148.5 145.6 154.1 节假日 116.8 128.1 126.4 125.3 126.4 126.9 双休日 106.7 117.1 121.4 111.9 117.3 119.4 缺货成本 工作日 60 297 594 891 1 188 1 485 节假日 60 297 594 891 1 188 1 485 双休日 60 297 594 891 1 188 1 485 碳排放成本 工作日 94.4 103.4 105.7 106.6 107.4 111.9 节假日 73.9 83.9 84.5 80.9 82.8 84.9 双休日 60.8 72.1 76.7 72.5 72.3 74.5 配送员薪资 工作日 734.1 768.5 769.7 769.9 770.7 768.8 节假日 757.6 758.1 759.8 755.4 753.9 758.3 双休日 672.3 721.6 719.5 711.1 725.1 718.5 表 9 工作日碳价格变化的比较试验结果
Table 9. Comparative test results of carbon price changes in working days
碳交易价格/(元/kg) 碳排放量/kg 碳排放成本/元 总成本/元 碳成本占总成本比例/% 0 90.532 2 0 1 984.089 7 0 0.25 92.325 8 34.271 2 2 092.846 9 1.64 0.5 93.188 1 68.883 8 2 095.798 7 3.29 0.75 92.432 8 103.325 7 2 139.365 7 4.83 1 91.875 1 125.900 5 2 145.300 9 5.87 2 90.087 3 226.528 7 2 332.657 9 9.71 3 87.198 5 377.701 6 2 361.791 2 15.99 4 87.854 3 503.602 1 2 487.691 9 20.24 5 86.967 2 629.502 6 2 613.592 2 24.09 6 86.983 1 826.605 8 2 739.492 8 30.17 7 85.020 7 881.303 6 2 865.393 3 30.76 8 85.857 3 1 102.142 1 2 991.293 8 36.84 9 82.953 1 1 389.165 7 3 117.194 3 44.56 10 82.853 7 1 543.514 5 3 243.094 8 47.59 20 81.972 5 2 214.858 6 4 405.182 5 50.28 30 81.317 6 3 777.051 6 5 545.319 4 68.11 40 80.983 2 4 875.559 7 6 685.455 8 72.93 50 80.732 8 5 837.146 4 7 813.55 72 74.71 表 10 顾客满意度变化的比较试验结果
Table 10. Comparative test results of customer satisfacions
最低顾客满意度标准/% 节假日分类 总成本/元 固定成本/元 运输成本/元 货损成本/元 平均顾客满意度 工作日 2 101.24 540 286.72 238.57 0.79 60 节假日 1 944.51 540 219.75 235.75 0.82 双休日 1 847.57 540 196.73 230.94 0.83 工作日 2 217.20 540 298.38 229.56 0.87 70 节假日 1 950.95 540 235.10 225.67 0.88 双休日 1 856.57 540 199.73 209.99 0.90 工作日 2 285.52 540 299.79 221.81 0.89 80 节假日 1 960.94 540 244.06 214.01 0.91 双休日 1 865.57 540 203.57 200.19 0.93 工作日 2 350.01 540 303.78 208.31 0.95 90 节假日 2 018.19 540 245.27 205.67 0.95 双休日 1 917.61 540 215.35 191.57 0.95 工作日 2 354.96 540 305.83 199.57 1.00 100 节假日 2 038.46 540 282.26 180.02 1.00 双休日 1 933.51 540 210.34 187.21 1.00 表 11 工作日存在的交通状态分类
Table 11. Classification of traffic conditions in working days
时段 本文交通状态 交通状态1 交通状态2 交通状态3 06:00—07:00 非常畅通 非常畅通 基本畅通 基本畅通 07:00—09:00 中度拥堵 中度拥堵 重度拥堵 重度拥堵 09:00—10:00 基本畅通 轻度拥堵 中度拥堵 重度拥堵 10:00—11:00 非常畅通 基本畅通 轻度拥堵 中度拥堵 表 12 不同交通状态下的模型运行结果
Table 12. Running results under different traffic conditions
交通状态 总成本/元 顾客满意度 运输时间/h 车辆数/辆 本文交通状态 2 162.3 0.87 448.2 3 交通状态1 2 204.3 0.89 497.8 3 交通状态2 3 103.5 0.90 824.3 5 交通状态3 3 271.2 0.88 841.5 5 -
[1] 张慧. 考虑交通拥堵的时变车辆路径问题研究[D]. 重庆: 重庆交通大学, 2018.ZHANG H. Research on time-varying vehicle routing problem considering traffic congestion[D]. Chongqing: Chongqing Jiaotong University, 2018. (in Chinese) [2] 陈治亚, 高辉, 徐光明, 等. 考虑随机需求和硬时间窗的多目标车辆路径优化方法[J]. 铁道科学与工程学报, 2021, 18(12): 3110-3120. doi: 10.19713/j.cnki.43-1423/u.T20210026CHEN Z Y, GAO H, XU G M, et al. Multi-objective vehicle routing optimization method based on stochastic demand and hard time window[J]. Journal of Railway Science and Engineering, 2021, 18(12): 3110-3120. (in Chinese) doi: 10.19713/j.cnki.43-1423/u.T20210026 [3] 张倩, 熊英, 何明珂, 等. 不确定需求生鲜电商配送路径规划多目标模型[J]. 系统仿真学报, 2019, 31(8): 1582-1590. doi: 10.16182/j.issn1004731x.joss.17-0376ZHANG Q, XIONG Y, HE M K, et al. Multi-objective model of distribution path planning for fresh electricity supplier with uncertain demand[J]. Journal of System Simulation, 2019, 31(8): 1528-1590. (in Chinese) doi: 10.16182/j.issn1004731x.joss.17-0376 [4] LIU G K, HU J Y, YU Y, et al, Vehicle routing problem in cold chain logistics: A joint distribution model with carbon trading mechanisms[J], Resources, Conservation and Recycling, 2020(156): 104715. [5] BELOFILHO M A F, AMORIM P, ALMADALOBO B. An adaptive large neighbourhood search for the operational integrated productionand distribution problem of perishable products[J]. International Journal of Production Research, 2015, 53(20): 1-19. [6] GOVINDAN K, JAFARIAN A, KHODAVE-RDI R, et al. Two-echelon multiple-vehicle location-routing problem with time windows for optimization of sustainable supply chain network of perishable food[J]. International Journal of Production Economics, 2014, 152(2): 9-28. [7] 兰辉, 何琴飞, 边展, 等. 考虑道路通行状况的冷链物流配送路径优化[J]. 大连海事大学学报, 2015, 41(4): 67-74. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201504012.htmLAN H, HE Q F, BIAN Z, et al. Optimizationof cold chain logistics distributionpath considering road traffic conditions[J]. Journal of Dalian Maritime University, 2015, 41(4): 67-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201504012.htm [8] 王恒, 徐亚星, 王振锋, 等. 基于道路状况的生鲜农产品配送路径优化[J]. 系统仿真学报, 2019, 31(1): 126-135. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201901018.htmWANG H, XU Y X, WANG Z F, et al. Distribution route optimization of fresh agricultural products based on road conditions[J]. Journal of System Simulation, 2019, 31(1): 126-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201901018.htm [9] 徐翔斌, 任晨昊. 考虑车辆限行和装箱约束的车辆路径优化方法[J]. 交通信息与安全, 2021, 39(3): 77-84. doi: 10.3963/j.jssn.1674-4861.2021.03.010XU X B, REN C H. Vehicle routing optimization method considering vehicle restrictions and packing constraints[J]. Journal of Transport Information and Safety, 2021, 39(3): 77-84. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.03.010 [10] ZHU L, HU D W. Study on the vehicle routing problem considering congestion and emission factors[J]. International Journal of Production Reaearch, 2019, 57(19): 6115-6129. doi: 10.1080/00207543.2018.1533260 [11] XIAO Y Y, KONAK A. The heterogeneous green vehicle routing and scheduling problem with time-varying trafficcongestion[J]. Transportation Research Part E: Logistics and Transportation Review, 2016(88): 146-166. [12] 季琳琳, 王清威, 周豪, 等. 考虑顾客满意度的冷链水果路径优化[J]. 浙江大学学报(工学版), 2021, 55(2): 307-317. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202102011.htmJI L L, WANG Q W, ZHOU H, et al. Cold chain fruit path optimization considering customer satisfaction[J]. Journal of Zhejiang University(Engineering Science), 2021, 55(2): 307-317. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202102011.htm [13] 杜志平, 胡永彪, 陈永立. 基于客户满意度的生鲜农产品末端配送的VRP研究[J]. 供应链管理, 2020(1): 113-128. https://www.cnki.com.cn/Article/CJFDTOTAL-GYLG202001014.htmDU Z P, HU Y B, C Y L. VRP research on end distribution of fresh agricultural products based on customer satisfaction[J]. Supply Chain Management, 2020(1): 113-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYLG202001014.htm [14] 王宁, 胡大伟, 徐杰, 等. 基于客户价值和满意度的城市冷链物流时变路径问题[J]. 中国公路学报, 2021, 34(9): 297-308.WNAG N, HU D W, XU J, et al. Urban cold chain logistics time-varying routing problem based on customer value and satisfaction[J]. China Journal of Highway and Transport. 2021, 34(9): 297-308. (in Chinese) [15] 刘虹, 傅晓敏. 考虑客户满意度的多目标多行程车辆路径优化[J]. 电子科技大学学报(社科版): 2022, 24(1): 105-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DKJB202201011.htmLIU H, FU X M. Multi-objective multi-trip vehicle routing optimization considering customer satisfaction[J]. Journal of University of Electronics and Technology(Social Science Edition): 2022, 24(1): 105-112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DKJB202201011.htm [16] 李慧丛. 考虑配送员工满意度的物流配送车辆调度研究[D]. 邯郸: 河北工程大学, 2016.LI H C. Research on logistics distribution vehicle scheduling considering employee satisfaction[D]. Handan: Hebei University of Engineering, 2016. (in Chinese) [17] 吴恒成. 考虑配送人员满意度的多目标车辆调度优化研究[D]. 马鞍山: 安徽工业大学, 2019.WU H C. Research on multi-objective vehicle scheduling optimization considering delivery personnel satisfaction[D]. Maanshan: AnhuiUniversityof Technology, 2019. (in Chinese) [18] 任明磊. 考虑配送员工满意度的物流配送车辆调度优化研究[D]. 大连: 东北财经大学, 2019.REN M L. Research on vehicle schedulingoptimization of logistics distribution considering distribution employee satisfaction[D]. Dalian: Dongbei University of Finance and Economics, 2019. (in Chinese) [19] 王勇, 黄思奇, 刘永, 等. 基于K-means聚类方法的物流多配送中心选址优化研究[J]. 公路交通科技, 2020, 37(1): 141-148. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202001017.htmWANG Y, HUANG S Q, LIU Y, et al. Research on location optimization of logistics multi-distribution center based on K-means clustering method[J]. Highway Traffic Technology, 2020, 37(1): 141-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202001017.htm [20] 刘建胜, 张有功, 熊峰, 等. Flying-V型仓储布局货位分配优化方法研究[J]. 运筹与管理, 2019, 28(11): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-YCGL201911005.htmLIU J S, ZHANG Y G, XIONG F, et al. Research on optimization method of cargo space allocation in flying-V warehouse layout[J]. Operations Research and Management, 2019, 28(11): 27-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YCGL201911005.htm [21] 杨龙海. 基于区块链的冷链药品溯源系统研究与实现[D]. 绵阳: 西南科技大学, 2021.YANG L H. Research and implementation of cold chain drug traceability system based on block chain[D]. Mianyang: Southwest University of Science and Technology, 2021. (in Chinese) [22] 刘志硕, 李秋雨, 董子琦, 等. 带软时间窗的冷链电动汽车路径问题研究[J]. 北京交通大学学报, 2022, 46(3): 57-66. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT202203007.htmLIU Z S, LI Q Y, DONG Z Q, et al. Research on routing problem of cold chain electric vehicle with soft time window[J]. Journal of Beijing Jiaotong University, 2022, 46(3): 57-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT202203007.htm [23] CHEN L, LIU Y, LANGEVIN A. A multi-compartment vehicle routing problem in coldchain distribution[J]. Computers and Operations Research, 2019(111): 58-66. [24] 杨京山. 时变路况下城市配送路径优化研究[D]. 西安: 长安大学, 2018.YANG J S. Research on urban distribution route optimization under time-varying road conditions[D]. Xi'an: Chang'an University, 2018. (in Chinese) [25] 沈丽, 李成玉, 甘彦, 等. 考虑货损和碳排放的生鲜产品配送路径优化[J]. 上海海事大学学报, 2021, 42(1): 44-49+70. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHY202101009.htmSHEN L, LI C Y, GAN Y, et al. Considering damage and carbon emissions of fresh productdistribution routeoptimization[J]. Journal of Shanghai Maritime University, 2021, 42(1): 44-49+70. (in chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHHY202101009.htm [26] 李志亮, 罗芳, 阮群生. 一种新的白化权函数的灰色聚类评价方法[J]. 延边大学学报(自然科学版), 2015, 41(4): 318-325. https://www.cnki.com.cn/Article/CJFDTOTAL-YBDZ201504011.htmLI Z L, LUO F, RUAN Q S. A new grey clus-tering evaluation method for whitening weight function[J]. Journal of Yanbian University(Natural Science Edition), 2015, 41(4): 318-325. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YBDZ201504011.htm [27] 韩晓龙. 水果物流网络及节点布局研究[D]. 武汉: 华中农业大学, 2009.HAN X L. Research on fruit logistics network and node layout[D]. Wuhan: Huazhong Agricultural University, 2009. (in Chinese) [28] 马昌喜, 何瑞春, 熊瑞琦. 基于双层规划的危险货物配送路径鲁棒优化[J]. 交通运输工程学报, 2018, 18(5): 165-175. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201805019.htmMA C X, HE R C, XIONG R Q. Robust optimization of dangerous goods distribution path based on bilevel programming[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 165-175. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201805019.htm