Capacity of Mountainous Roads with Ice and Snow Pavement During Beijing Winter Olympics Based on a Safe Speed Model
-
摘要: 复杂山地线形和道路冰雪路面结合条件下的安全车速设置及通行能力保障是交通管理面临的新挑战。针对北京冬奥会延庆赛区复杂山地道路冰雪路面场景,建立了安全车速与道路线形设计及路面附着系数之间的关系,以安全车速为依据得到了不同路面条件下山地道路的通行能力。依据道路平曲线、竖曲线和横断面数据建立了山地道路三维空间模型;分析了车辆在山地道路平纵组合路段的受力情况,构建了车辆安全行驶速度与圆曲线半径、道路超高、纵坡坡度和路面附着系数的关系模型,并分析了基于安全车速模型的道路通行能力。为了验证模型,选取2种常见的冰雪路面状况和2种常用的车辆类型,获得不同条件下山地道路冰雪路面的安全车速。采用VISSIM软件设计了20种仿真场景,结合道路实测数据验证了安全车速模型的对山地道路冰雪路面车辆安全行驶的提升作用。实测与结果表明:相比全程单一限速模型,所建立的安全车速模型在冰膜路面的行程时间缩短了约38%(小汽车)和32%(大客车),雪板路面的行程时间缩短了约26%(小汽车)和24%(大客车)。山地道路交通流量存在1个自由流到饱和流的相变过程,冰膜路面小汽车下行最大交通量为241辆/h(单向行驶)和231辆/h(双向行驶),大客车下行最大交通量为227辆/h(单向行驶)和222辆/h(双向行驶);雪板路面小汽车下行最大交通量为319辆/h(单向行驶)和249辆/h(双向行驶),大客车下行最大交通量为301辆/h(单向行驶)和236辆/h(双向行驶)。Abstract: A novel challenge for traffic management is setting speed limits as well as guaranteeing road capacity under complex mountainous roads under the condition of ice and snow pavement. A safe speed model is proposed to solve this problem in Yanqing competition zone of Beijing Winter Olympics. The model studies relationships of safe speed, road alignment design, and adhesion coefficient, taking the safe speed as a basis to obtain the critical road capacity of mountainous roads under different conditions. A three-dimensional spatial model of mountainous road is developed by combining road horizontal curve, vertical curve, and cross section data. Based on the model, the forces acting on the vehicle in a mountainous road section of horizontal and vertical alignments is analyzed. The relationships between the safe speed and its influencing factors including radius of curves, road superelevation, downward slope, and adhesion coefficients of road is studied. The road capacity is analyzed based on the safe speed model. Two pavement conditions and two vehicle types are selected as case studies to obtain safe speeds on ice and snow pavement of mountain roads under different conditions. A total of 20 simulation scenarios are designed by VISSIM to verify the safe model. Combined with the actual traffic data, the simulation results show that compared with the traditional full speed limit model, the travel time of the developed model can reduce by 38% (car) and 32% (bus) with ice pavement; and reduce by 26% (car) and 24% (bus) with snow pavement. In addition, there is a phase transition from free flow to saturated flow in the traffic flow of mountainous road. The maximum road capacity for cars of the downward slope with ice pavement is 241 vehicles/h (one-way driving) and 231 vehicles/h (two-way driving); for buses is 227 vehicles/h (one-way driving) and 222 vehicles/h (two-way driving). The maximum road capacity for cars of the downward slope with snow pavement is 319 vehicles/h (one-way driving) and 249 vehicles/ h (two-way driving); for buses is 301 vehicles/h (one-way driving) and 236 vehicles/h (two-way driving).
-
Key words:
- traffic safety /
- mountainous road /
- safe speed /
- road capacity /
- traffic simulation
-
表 1 不同路面附着系数
Table 1. Road adhesion coefficients of different road pavements
路面 μ μh 冰膜 0.1 0.06 雪板 0.22 0.132 表 2 北京冬奥会专用车辆车型结构参数
Table 2. Structural parameters of vehicles for Beijing Winter Olympic
车型 轴距l /m 质心至前轴距离l1 /m 质心至后轴距离l2 /m 质心高度hg/m 轿车 2.6 1.2 1.4 0.5 大客车 6.05 3.106 2.944 1.2 表 3 不同场景下路段行程时间结果
Table 3. Travel time results in different scenarios
测试场景 路段行程时间/min 车辆全部下行 上下行车辆比例1:1 轿车 大客车 轿车 大客车 实测数据 实验人1 26.54 实验人2 25.39 全程限速(km/h) 10 42.15 42.39 50.28 56.95 15 28.3 28.52 37.15 39.28 20 22.25 22.54 33.35 35.88 安全车速 冰膜路面 26.16 28.83 31.05 34.08 雪板路面 21.01 21.42 26.23 27.13 -
[1] 陈航. 山地城市道路弯坡段交通安全的影响与评价[D]. 重庆: 重庆交通大学, 2018.CHEN H. Impact and evaluation of traffic safety on curved slope section of roads in mountainous cities[D]. Chongqing: Chongqing Jiaotong University, 2018. (in Chinese) [2] PADARTHY M, HEYNS E. Identification and classification of slippery winter road conditions using commonly available vehicle variables[J]. Transportation Research Record, 2019, 2673(2): 60-70. doi: 10.1177/0361198118823494 [3] LIU Y, QIAO J, HU Y, et al. Determination of curve speed zones for mountainous freeways[J]. Mathematical Problems in Engineering, 2020(5): 1-11. http://www.xueshufan.com/publication/3108963695 [4] ALREJJAL A, FARID A, KSAIBATI K. A correlated random parameters approach to investigate large truck rollover crashes on mountainous interstates[J]. Accident Analysis & Prevention, 2021(159): 106233. http://www.sciencedirect.com/science/article/pii/S0001457521002645 [5] AHMED M, HUANG H, ABDEL-ATY M, et al. Exploring a Bayesian hierarchical approach for developing safety performance functions for a mountainous freeway[J]. Accident Analysis & Prevention, 2011, 43(4): 1581-1589. http://www.researchgate.net/profile/Mohamed_Ahmed104/publication/51101473_Exploring_a_Bayesian_hierarchical_approach_for_developing_safety_performance_functions_for_a_mountainous_freeway/links/54568d910cf2cf516480317f [6] UMEDA S, KAWASAKI Y, KUWAHARA M, et al. Risk evaluation of traffic standstills on winter roads using a state space model[J]. Transportation Research Part C: Emerging Technologies, 2021(125): 103005. http://www.nstl.gov.cn/paper_detail.html?id=6db3d4acd7001181d1ad2dc2699531f2 [7] 李松龄, 裴玉龙. 冰雪路面公路平曲线路段限速仿真[J]. 哈尔滨工业大学学报, 2012, 44(10): 66-69. doi: 10.11918/j.issn.0367-6234.2012.10.014LI S, PEI Y. Speed limit simulation on highway horizontal curve section under the condition of ice and snow pavement[J]. Journal of Harbin Institute of Technology, 2012, 44 (10): 66-69. (in Chinese) doi: 10.11918/j.issn.0367-6234.2012.10.014 [8] 刘伟. 山区高速公路不良气候条件下行车安全保障技术研究[D]. 西安: 长安大学, 2015.LIU W. Research on traffic safety technology under adverse climate in mountainous areas[D]. Xi'an: Chang'an University, China, 2015. (in Chinese) [9] 刘建蓓, 罗京, 郭腾峰. 基于安全容许速度的雨天公路可变限速方法[J]. 中国公路学报, 2015, 28(12): 128-133. doi: 10.3969/j.issn.1001-7372.2015.12.018LIU J B, LUO J, GUO T F. Variable speed limit method based on safe permissible speed under wet weather[J]. China Journal of Highway and Transport, 2015, 28(12): 128-133. (in Chinese) doi: 10.3969/j.issn.1001-7372.2015.12.018 [10] SAHA P, AHMED M M, YOUNG R K. Safety effectiveness of variable speed limit system in adverse weather conditions on challenging roadway geometry[J]. Transportation Research Record, 2015, 2521(1): 45-53. doi: 10.3141/2521-05 [11] YANG G, AHMED M M, GAWEESH S. Impact of variable speed limit in a connected vehicle environment on truck driver behavior under adverse weather conditions: driving simulator study[J]. Transportation Research Record, 2019, 2673 (7): 132-142. doi: 10.1177/0361198119842111 [12] GAWEESH S M, AHMED M M. Evaluating the safety effectiveness of a weather-based variable speed limit for a rural mountainous freeway in Wyoming[J]. Journal of Transportation Safety & Security, 2020, 12(10): 1205-1230. [13] 姚冬冬, 马林, 陶鹏飞, 等. 冰雪条件下高速公路可变限速方法[J]. 吉林大学学报(信息科学版), 2020, 38(3): 258-265. doi: 10.3969/j.issn.1671-5896.2020.03.004YAO D, MA L, TAO P. Variable speed limit control method for freeway under snow and ice conditions[J]. Journal of Jilin University(Information Science Edition), 2020, 38(3): 258-265. (in Chinese) doi: 10.3969/j.issn.1671-5896.2020.03.004 [14] MALIN F, NORROS I, INNAMAA S. Accident risk of road and weather conditions on different road types[J]. Accident Analysis & Prevention, 2019(122): 181-188. http://www.onacademic.com/detail/journal_1000040900319410_fea1.html [15] BOYLE P. Risk, resiliency, and urban governance: The case of the 2010 Winter Olympic Games[J]. Canadian Review of Sociology/Revue Canadienne de Sociologies, 2012, 49(4): 350-369. doi: 10.1111/j.1755-618X.2012.01301.x [16] KIM Y, BAIK N, KIM J. A study on development of mobile road surface condition detection system utilizing probe car[J]. Journal of Emerging Trends in Computing and Information Sciences, 2013, 4(10): 742-750. http://www.cisjournal.org/journalofcomputing/archive/vol4no10/vol4no10_2.pdf [17] 郭淑霞, 胡松, 王晓伟. 大型体育赛事场馆交通设施规划及交通组织: 以奥运场馆为例[J]. 城市交通, 2021, 19(04): 48-55. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJT202104009.htmGUO S X, HU S, WANG X W. Transportation infrastructure planning and organization strategies of venues in large-scale sports events: A case study of Olympic venues[J]. Urban Transport of China, 2021, 19(4): 48-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSJT202104009.htm [18] 冷慧康. 高速公路线形三维运动学分析方法与评价研究[D]. 成都: 西南交通大学, 2020.LENG H. Research on the method and evaluation of linear three-dimensional kinematics analysis of expressway[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese) [19] 吴艳霞, 刘剑, 黄帅, 等. 雨天高速公路纵坡对驾驶员心率及行车速度影响[J]. 交通信息与安全, 2021, 39(4): 35-42. doi: 10.3963/j.jssn.1674-4861.2021.04.005WU Y X, LIU J, HUANG S, et al. Influences of longitudinal slopes of highways on drivers' heart rate and driving speeds on rainy days[J]. Journal of Transport Information and Safety, 2021, 39(4): 35-42. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.04.005 [20] DENG T, FU J, SHAO Y, et al. Pedal operation characteristics and driving workload on slopes of mountainous road based on naturalistic driving tests[J]. Safety Science, 2019 (119): 40-49. http://www.onacademic.com/detail/journal_1000040892030710_a475.html [21] YUE L, WANG H, PAZ A. An optimization design method of combination of steep slope and sharp curve sections for mountain highways[J]. Mathematical Problems in Engineering, 2019(4): 1-13. http://www.onacademic.com/detail/journal_1000042304472599_2611.html [22] 张智勇, 王晓燕, 董子恩. 冬奥赛区山地公路附着系数的敏感性分析研究[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(04): 612-616. doi: 10.3963/j.issn.2095-3844.2020.04.005ZHANG Z, WANG X, DONG Z. Sensitivity analysis of adhesion coefficient of mountainous highway in Winter Olympics Games area[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2020, 44(4): 612-616. (in Chinese) doi: 10.3963/j.issn.2095-3844.2020.04.005 [23] 张杉, 庞明宝, 任泊宁. 冰雪道路环境下交通流微观仿真及事故率研究[J]. 中国安全科学学报, 2020, 30(1): 148-154. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202001025.htmZHANG S, PANG M, REN B. Microscopic simulation and accident probability of traffic flow in ice and snow environment[J]. China Safety Science Journal, 2020, 30(1): 148-154. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202001025.htm [24] HOOGENDOORN S, HOOGENDOORN R G, DAAMEN W. Wiedemann revisited: New trajectory filtering technique and its implications for car-following modeling[J]. Transportation Research Record, 2011, 2260(1): 152-162. doi: 10.3141/2260-17 [25] 中华人民共和国住房和城乡建设部. 国家森林公园设计规范: GB/T 51046—2014[S]. 北京: 中国计划出版社, 2014.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of national forest park: GB/T 51046—2014[S]. Beijing: China Planning Press, 2014. (in Chinese)